
Pointers 
 

Using Variables 

Essentially, the computer's memory is made up of bytes. Each byte has a number, an 
address, associated with it. The picture below represents several bytes of a computer's 
memory. In the picture, addresses 924 thru 940 are shown.  

 

Try:  
C++  C  

 
1:#include <iostream> 
2:main() 
 3:{ 
 4:  float fl=3.14; 
 5:  std::cout << fl << std::endl; 
 6:} 

 
1:#include <stdio.h> 
2:main() 
 3:{ 
 4:  float fl=3.14; 
 5:  printf("%.2f\n", fl); 
 6:} 

At line (4) in the program above, the computer reserves memory for fl. In our examples, 
we'll assume that a float requires 4 bytes. Depending on the computer's architecture, a 
float may require 2, 4, 8 or some other number of bytes.  

 

When fl is used in line (5), two distinct steps occur:  

1. The program finds and grabs the address reserved for fl--in this example 924. 
2. The contents stored at that address are retrieved 

To generalize, whenever any variable is accessed, the above two distinct steps occur 
to retrieve the contents of the variable.  

The illustration that shows 3.14 in the computer's memory can be 



misleading. Looking at the diagram, it appears that "3" is stored in 
memory location 924, "." is stored in memory location 925, "1" in 926, 
and "4" in 927. Keep in mind that the computer actually uses an 
algorithm to convert the floating point number 3.14 into a set of ones 
and zeros. Each byte holds 8 ones or zeros. So, our 4 byte float is 
stored as 32 ones and zeros (8 per byte times 4 bytes). Regardless of 
whether the number is 3.14, or -273.15, the number is always stored in 
4 bytes as a series of 32 ones and zeros.  

Separating the Steps 

Two operators are provided that, when used, cause these two steps to occur separately.  
operator meaning example 

& do only step 1 on a variable &fl 
* do step 2 on a number(address) *some_num

 
Try this code to see what prints out:  

C++  C  
 
1:#include <iostream> 
2:main() 
3:{ 
4:  float fl=3.14; 
5:  std::cout << "fl's address=" << 
(unsigned int) &fl << std::endl; 
6:} 

 
1:#include <stdio.h> 
2:main() 
3:{ 
4:  float fl=3.14; 
5:  printf("fl's address=%u\n", 
(unsigned int) &fl); 
6:} 

On line (5) of the example, The & operator is being used on fl. On line (5), only step 1 is 
being performed on a variable:  

1. The program finds and grabs the address reserved for fl... 

It is fl's address that is printed to the screen. If the & operator had not been placed in 
front of fl, then step 2 would have occurred as well, and 3.14 would have been printed to 
the screen.  

The (unsigned int) phrase will be discussed later. It is there so that 
&addr will print out as a non-negative number. It has been shown in 
gray to indicate that you must include it for the program to compile 
properly but that it is not relevant to this current discussion.  

 
Keep in mind that an address is really just a simple number. In fact, we can store an 
address in an integer variable. Try this:  

C++  C  
 
1:#include <iostream> 
2:main() 

 
1:#include <stdio.h> 
2:main() 



3:{ 
4:  float fl=3.14; 
5:  unsigned int addr=(unsigned int) 
&fl; 
6:  std::cout << "fl's address=" << 
addr << std::endl; 
7:} 

3:{ 
4:  float fl=3.14; 
5:  unsigned int addr=(unsigned 
int) &fl; 
6:  printf("fl's address=%u\n", 
addr); 
7:} 

 

The above code shows that there is nothing magical about addresses. They are just simple 
numbers that can be stored in integer variables.  

The unsigned keyword at the start of line (5) simply means that the 
integer will not hold negative numbers. As before, the (unsigned 
int) phrase has been shown in gray. It must be included for the code 
to compile, but is not relevant to this discussion. It will be discussed 
later.  

 
Now let's test the other operator, the * operator that retrieves the contents stored at an 
address:  

C++  C  

 
1:#include <iostream> 
2:main() 
3:{ 
4:  float fl=3.14; 
5:  unsigned int addr=(unsigned int) 
&fl; 
6:  std::cout << "fl's address=" << 
addr << std::endl; 
7:  std::cout << "addr's contents=" << 
* (float*) addr << std::endl; 
8:} 

 
1:#include <stdio.h> 
2:main() 
3:{ 
4:  float fl=3.14; 
5:  unsigned int addr=(unsigned 
int) &fl; 
6:  printf("fl's address=%u\n", 
addr); 
7:  printf("addr's 
contents=%.2f\n", * (float*) 
addr); 
8:} 

In line (7), step 2 has been performed on a number:  

2. The contents stored at that address [addr] are retrieved 



In order to make line (7) work, a little "syntax sugar" had to be added 
for the program to compile. Like before, (float*) is shown in gray 
because it is not relevant to the current discussion. For the sake of this 
discussion, just read "*(float*)addr" as "*addr" (that is, ignore the 
stuff in gray). The code shown in gray will be discussed later.  

OK, But why do we need & and * 

We have shown that 2 distinct steps occur when accessing a variable, and that we can 
make those steps occur separately. But why is this useful?  

To see why, let's first look at how functions work in C/C++. Try this code:  

C++  C  
 
1:#include <iostream> 
2:void somefunc(float fvar) 
 3:{ 
 4:  fvar=99.9; 
 5:} 
 6:main() 
 7:{ 
 8:  float fl=3.14; 
 9:  somefunc(fl); 
10:  std::cout << fl << std::endl; 
11:} 

 
1:#include <stdio.h> 
2:void somefunc(float fvar) 
 3:{ 
 4:  fvar=99.9; 
 5:} 
 6:main() 
 7:{ 
 8:  float fl=3.14; 
 9:  somefunc(fl); 
10:  printf("%.2f\n", fl); 
11:} 

What prints out? 3.14? 99.9? It turns out that 3.14 prints out. The general term used to 
describe this behavior is pass by value. When somefunc(fl) is called at line 9:  

1. Execution jumps to line (2) to run the function 
2. fvar is created as its own variable and fl's value is copied into fvar 

 



3. On line (4), 99.9 is assigned to fvar 

 
4. Now that the function is finished, execution resumes in main where it left off (line 

10). The fl variable is unchanged, 3.14 prints out. 

 
We can circumvent this pass by value behavior and change values passed into functions 
by using the & and * operators.  

C++  C  
 
1:#include <iostream> 
2:void somefunc(unsigned int fptr) 
 3:{ 
 4:  *(float*)fptr=99.9; 
 5:} 
 6: 
 7:main() 
 8:{ 
 9:  float fl=3.14; 
10:  unsigned int addr=(unsigned 
int) &fl; 
11:  somefunc(addr); 
12:  std::cout << fl << std::endl; 
13:} 

 
1:#include <stdio.h> 
2:void somefunc(unsigned int fptr) 
 3:{ 
 4:  *(float*)fptr=99.9; 
 5:} 
 6: 
 7:main() 
 8:{ 
 9:  float fl=3.14; 
10:  unsigned int addr=(unsigned 
int) &fl; 
11:  somefunc(addr); 
12:  printf("%.2f\n", fl); 
13:} 

Quite simply, the two steps that normally occur when accessing a variable are being 
separated to allow us to change the variable's value in a different function.  

1. The floating point variable fl is created at line (9) and given the value 3.14 

 



2. The & operator is used on fl at line (10) (do only step 1, get the address). The 
address is stored in the integer variable addr. 

 
3. The function somefunc is called at line (11) and fl's address is passed as an 

argument. 
4. The function somefunc begins at line (2), fptr is created and fl's address is 

copied into fptr. 

 
5. The * operator is used on fptr at line (4) -- do step 2, the contents stored in an 

address are retrieved. In this example, the contents at address 924 are retrieved. 
6. The contents at address 924 are assigned the value 99.9. 

 
7. The function finishes. Control returns to line (12). 
8. The contents of fl are printed to the screen. 



Pointer Variables 

Even though we have shown that an address is nothing more than a simple integer, the 
creators of the language were afraid we might confuse variables in our programs. We 
might confuse integers we intend to use for program values (e.g. variables storing ages, 
measurements, counters, etc.) with integers we intend to use for holding the addresses of 
our variables.  

The language creators decided the best way to eliminate confusion was to create a 
different type of variable for holding addresses. A first attempt at this might have looked 
something like this:  

 
1:... 
2:  float fl=3.14; 
3:  float Ptr addr = &fl; 
4:... 
On line (3), here is how to describe the addr variable: 

 
(A) addr is an integer. (B) However, it is a special integer designed to hold the address of 
a (C) float  

In the code above, line (3) Is close to what the creators of the language wanted except for 
one thing: using Ptr would require introducing another keyword into the language. If 
there is one thing that all C instructors like to brag about, it is how there are only a very 
small number of keywords in the language. Well, using line (3) as shown above would 
mean adding Ptr as another keyword to the language.  

To avoid this threat to the very fabric of the universe, the creators cast about for 
something already being used in the language that could do double duty as Ptr shown 
above. What they came up with was the following:  

 
1:... 
2:  float fl=3.14; 
3:  float * addr = &fl; 4:... 



Even with the * instead of Ptr, addr is described the same way: 

 
(A) addr is an integer. (B) However, it is a special integer designed to hold the address of 
a (C) float  

These variables are described this way, regardless of the type:  

 
(A) addr is an integer. (B) However, it is a special integer designed to hold the address of 
a (C) char  

 
(A) addr is an integer. (B) However, it is a special integer designed to hold the address of 
an (C) int  

This "...special integer..." way of describing these variables is a mouthful, so we shorten 
it and just say "addr is a float pointer" or "addr is a pointer to a float" (or char, or int, 
etc.).  

Unfortunately, the language creators chose the * character to replace Ptr. The * character 
is confusing because the * character is also used to get the contents at an address ("do 
step 2 on a number"). These two uses of the * character have nothing to do with each 
other.  

What is all that "syntax sugar" anyway? (Casting) 

Let's take one last look at our original code that illustrates the utility of separating out 
steps 1 & 2.  

C++  C  



 
1:#include <iostream> 
2:void somefunc(unsigned int fptr) 
 3:{ 
 4:  *(float*)fptr=99.9; 
 5:} 
 6: 
 7:main() 
 8:{ 
 9:  float fl=3.14; 
10:  unsigned int addr=(unsigned 
int) &fl; 
11:  somefunc(addr); 
12:  std::cout << fl << std::endl; 
13:} 

 
1:#include <stdio.h> 
2:void somefunc(unsigned int fptr) 
 3:{ 
 4:  *(float*)fptr=99.9; 
 5:} 
 6: 
 7:main() 
 8:{ 
 9:  float fl=3.14; 
10:  unsigned int addr=(unsigned 
int) &fl; 
11:  somefunc(addr); 
12:  printf("%.2f\n", fl); 
13:} 

In nearly all of the code samples, you have been asked to ignore certain bits of the code. 
These bits of code have always appeared around those areas where we are either taking 
the address of a variable or getting the contents at an address (doing step 1 or step 2 on a 
variable)  

Those bits of "syntax sugar" are there to keep the compiler from complaining. The first 
example of this in the above program is on line (10).  

On line (10) we are taking the address of the floating point number fl ("do only step 1 on 
a number"). After we get that address, we store it in addr.  

Why would the compiler complain? Because when we get assign the address of fl to 
addr, the compiler does not expect addr to be an unsigned int. The compiler expects 
addr to be a float *. That is, a special integer designed to hold the address of a float. 
To keep the compiler from complaining, we tell the compiler to treat &fl as an unsigned 
int rather than a float *.  

This "syntax sugar" that causes the compiler to treat variables and expressions differently 
is called casting. The way a programmer describes line (10) is: "The address of fl is 
being cast into an unsigned int and assigned to addr"  

The other place casting occurs is on line (4). On line (4), we are getting the contents at an 
address ("do step 2 on a number/address"). Why would the compiler complain? Because 
the compiler should get the contents of the address of a float. The address of our float is 
in stored in fptr, which is an unsigned int, not a float *. We tell the compiler to 
treat fptr as the address of a floating point number by casting it into a float *. Once we 
tell the compiler this, we can get the contents at the address without complaint.  

Putting it all together 

From the previous section, you might be left with the impression that whenever you deal 
with addresses and pointers, there is a lot of casting. Not so. The only reason our 
examples up till now have required casting is because we were storing our addresses in 



unsigned int variables. The language designers want us to store addresses in the 
"special integer" variables, that is, the pointer variables they designed for just such a 
purpose.  

Once we replace our unsigned int variables with these pointer variables, none of the 
casting is required:  

C++  C  
 
1:#include <iostream> 
2:void somefunc(float* fptr) 
 3:{ 
 4:  *fptr=99.9; 
 5:} 
 6: 
 7:main() 
 8:{ 
 9:  float fl=3.14; 
10:  float* addr = &fl; 
11:  somefunc(addr); 
12:  std::cout << fl << std::endl; 
13:} 

 
1:#include <stdio.h> 
2:void somefunc(float* fptr) 
 3:{ 
 4:  *fptr=99.9; 
 5:} 
 6: 
 7:main() 
 8:{ 
 9:  float fl=3.14; 
10:  float* addr = &fl; 
11:  somefunc(addr); 
12:  printf("%.2f\n", fl); 
13:} 

• On line (10), when we take the address of fl the address is assigned to a variable 
designed to hold it. No casting is required. 

• When addr is passed to the function in line (11), addr is copied to fptr on line 
(2). 

• Line (2) shows that fptr is created as a float pointer, that is a variable designed to 
hold the address of a floating point number. As a result, no casting is needed on 
line (4) where the contents at the address are retrieved. 

 

Revision History 

2002 June 02  Updated the C++ I/O preprocessor directives and I/O calls to conform to 
standard.  

2001 April 30  Some minor corrections.  
1999 March 
19  Added C version of code. Minor corrections to text.  

 

Miscellaneous 

The graphics in this tutorial were created using the freely distributed image manipulation 
program The GIMP. Information on The GIMP can be found at http://www.gimp.org/  



Please contact me with any errata, comments, suggested changes, or improvements: 
tgibson@augustcouncil.com  

The code in this tutorial that stores addresses in unsigned int's may fail on a very few 
compilers, particulary older compilers. If this is the case with your compiler, try using 
unsigned long instead of unsigned int.  

Copyright 2001-2002 Todd A. Gibson. All Rights Reserved. 

While this document is copyright by me with all rights reserved, permission is granted to 
freely distribute verbatim copies of this document provided that no modifications outside 
of formatting be made, and that this notice remain intact.  
 
 

Computer Addresses 

For the sake of this tutorial, drawings of memory are shown in the form of a ribbon 
divided into boxes. Each box represents a single byte with its own address. The sample 
addresses shown in the drawings run from 924 to 940.  

Many of the sample programs in this tutorial will print addresses to the screen. Typically, 
the address values shown when running these programs will be quite high. It isn't unusual 
to see something like 3221223612 displayed for an address.  

Don't worry that the addresses you see when running the sample programs are much 
larger than those shown in the drawings. Small 3 digit addresses are used in the drawings 
because it is much easier on the eyes than trying to read 10 digit addresses underneath 
each byte of memory.  
 

1. The program finds and grabs the address reserved for fl--
in this example 924 

 

In our example, fl is not a single byte. It is made up of 4 bytes (with 4 addresses) In step 
1, When the program "grabs the address", it grabs only the address of fl's first byte--924 
.  



 
 

2. The contents stored at that address are retrieved 

 

The program knows fl is a float, and that all floats have four bytes. Therefore, when the 
program does step 2, it knows to retrieve the contents in the 4 bytes starting at address 
924.  
 

The reason for pointer variables 

Eliminating confusion is not an entirely accurate reason for pointer variables. A primary 
motivation for having a pointer type for each variable type is to help the compiler. 
Referring back to an earlier example, when we get the contents at an address ("do step 2 
on a number"), the compiler must know how to get the contents at the address.  

The compiler needs to know two things when getting the contents at an address:  

• How many bytes starting at the given address make up the value. For example, 
does the address refer to a 2 byte short int or a 4 byte float or an 8 byte 
double? 

• How to convert those bytes into the value. That is, the process for converting 4 
bytes into a float is different than the process for converting 2 bytes into a short 
int.  

So "eliminating confusion" ends up being more of a side-effect of having pointers rather 
than the reason for having them. That being said, there are programming languages that 
get by without typing pointers. For example, in the FORTH programming language, an 
address could just as easily point to a subroutine as point to a floating point number. It's 
up to the programmer to use the pointer correctly.  

 
 



Pointer declarations and expressions 

It is only a half-truth that these two uses of the * character have nothing to do with each 
other. It is well documented that the * character was chosen for these different uses 
because both uses involve pointers and therefore merit similar syntax.  

The important point to come away with is that using the * character in declarations:  
 
float *fptr; 
is different from using it in expressions:  
 
float fl; 
... 
fl=82.3 + *fptr; 
From this perspective, the two uses of the * character have nothing to do with each other.  
 

Casting 

When a variable is cast into a different type, the actual variable is not harmed. Here is a 
snippet from the program currently being examined in the tutorial:  

 
 2:void somefunc(unsigned int fptr) 
 3:{ 
 4:  *(float*)fptr=99.9; 
 5:} 
Try adding this statement between lines (4) and (5):  
 
  std::cout << fptr << std::endl; 
This line just prints fptr to the screen. But the point is, that fptr is printed to the screen 
as an unsigned int. Even though ftpr was cast into a float* in line 4, fptr was not 
permanently transformed into a float*.  

Casting merely changes the way the compiler uses the variable at the point where the cast 
is made.  
 


