Oracle, MySQL, Cassandra, Hadoop Database Training Classes in Berlin, Germany

Learn Oracle, MySQL, Cassandra, Hadoop Database in Berlin, Germany and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Oracle, MySQL, Cassandra, Hadoop Database related training offerings in Berlin, Germany: Oracle, MySQL, Cassandra, Hadoop Database Training

We offer private customized training for groups of 3 or more attendees.

Oracle, MySQL, Cassandra, Hadoop Database Training Catalog

cost: $ 495length: 1 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 1090length: 3 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 1090length: 2 day(s)

Cassandra Classes

Hadoop Classes

cost: $ 1590length: 3 day(s)

Linux Unix Classes

cost: $ 1890length: 3 day(s)

Microsoft Development Classes

MySQL Classes

cost: $ 490length: 1 day(s)
cost: $ 790length: 2 day(s)
cost: $ 1290length: 4 day(s)
cost: $ 1190length: 3 day(s)

Oracle Classes

cost: $ 2090length: 5 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1590length: 4 day(s)
cost: $ 790length: 2 day(s)
cost: $ 690length: 1 day(s)
cost: $ 2800length: 5 day(s)
cost: $ 1690length: 3 day(s)
cost: $ 2600length: 5 day(s)

SQL Server Classes

cost: $ 1290length: 3 day(s)
cost: $ 890length: 2 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 4 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1290length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Python programming language is general purpose open source programming language. One of its main features is flexibility and ease of use. Python has a variety of useful set of utilities and libraries for data processing and analytical tasks. Currently due to the rise in demand of big data processing python has grown in popularity because its features are easy to use which are core to the processing of huge chunks of information.

Guido Van Rossum, the pioneer of python, introduced python in the year 1980 and then implemented it in 1989. The intention behind the development of python was to make it open source language that can also be used for commercial projects. The fundamental principle of python is to write the code that is easy to use, highly readable and embrace writing fewer lines of code for achieving a particular task. One of the most popular standard libraries which have ready to use tools for performing a various work is Python Package Index. It was introduced in January 2016 and contains more than 72,000 packages for third-party software usage.

Python plays a critical role in linking data to customers. Recently python has found few entry barriers and many people have had access to have experienced the power of python in the past. So, what makes python the best language for big data analytics?

One of the reasons to choose python is that python ecosystem is very vibrant, the ratings at Redmonk are a proof of the strength python community. The Redmonk ranking is based on StackOverflow discussions and contribution made in Github to determine the popularity of programming language on the method used by users to ask questions about Python and the number of the open source projects contributions.

Java still has its place in the world of software development, but is it quickly becoming obsolete by the more dynamically enabled Python programming language? The issue is hotly contested by both sides of the debate. Java experts point out that Java is still being developed with more programmer friendly updates. Python users swear that Java can take up to ten times longer to develop. Managers that need to make the best decision for a company need concrete information so that an informed and rational decision can be made.

First, Java is a static typed language while Python is dynamically typed. Static typed languages require that each variable name must be tied to both a type and an object. Dynamically typed languages only require that a variable name only gets bound to an object. Immediately, this puts Python ahead of the game in terms of productivity since a static typed language requires several elements and can make errors in coding more likely.

Python uses a concise language while Java uses verbose language. Concise language, as the name suggests, gets straight to the point without extra words. Removing additional syntax can greatly reduce the amount of time required to program.  A simple call in Java, such as the ever notorious "Hello, World" requires three several lines of coding while Python requires a single sentence. Java requires the use of checked exceptions. If the exceptions are not caught or thrown out then the code fails to compile. In terms of language, Python certainly has surpassed Java in terms of brevity.

Additionally, while Java's string handling capabilities have improved they haven't yet matched the sophistication of Python's. Web applications rely upon fast load times and extraneous code can increase user wait time. Python optimizes code in ways that Java doesn't, and this can make Python a more efficient language. However, Java does run faster than Python and this can be a significant advantage for programmers using Java. When you factor in the need for a compiler for Java applications the speed factor cancels itself out leaving Python and Java at an impasse.

While a programmer will continue to argue for the language that makes it easiest based on the programmer's current level of knowledge, new software compiled with Python takes less time and provides a simplified coding language that reduces the chance for errors. When things go right, Java works well and there are no problems. However, when errors get introduced into the code, it can become extremely time consuming to locate and correct those errors. Python generally uses less code to begin with and makes it easier and more efficient to work with.

Ultimately, both languages have their own strengths and weaknesses. For creating simple applications, Python provides a simpler and more effective application. Larger applications can benefit from Java and the verbosity of the code actually makes it more compatible with future versions. Python code has been known to break with new releases. Ultimately, Python works best as a type of connecting language to conduct quick and dirty work that would be too intensive when using Java alone. In this sense, Java is a low-level implementation language. While both languages are continuing to develop, it's unlikely that one language will surpass the other for all programming needs in the near future.

Studying a functional programming language is a good way to discover new approaches to problems and different ways of thinking. Although functional programming has much in common with logic and imperative programming, it uses unique abstractions and a different toolset for solving problems. Likewise, many current mainstream languages are beginning to pick up and integrate various techniques and features from functional programming.

Many authorities feel that Haskell is a great introductory language for learning functional programming. However, there are various other possibilities, including Scheme, F#, Scala, Clojure, Erlang and others.

Haskell is widely recognized as a beautiful, concise and high-performing programming language. It is statically typed and supports various cool features that augment language expressivity, including currying and pattern matching. In addition to monads, the language support a type-class system based on methods; this enables higher encapsulation and abstraction. Advanced Haskell will require learning about combinators, lambda calculus and category theory. Haskell allows programmers to create extremely elegant solutions.

Scheme is another good learning language -- it has an extensive history in academia and a vast body of instructional documents. Based on the oldest functional language -- Lisp -- Scheme is actually very small and elegant. Studying Scheme will allow the programmer to master iteration and recursion, lambda functions and first-class functions, closures, and bottom-up design.

Supported by Microsoft and growing in popularity, F# is a multi-paradigm, functional-first programming language that derives from ML and incorporates features from numerous languages, including OCaml, Scala, Haskell and Erlang. F# is described as a functional language that also supports object-oriented and imperative techniques. It is a .NET family member. F# allows the programmer to create succinct, type-safe, expressive and efficient solutions. It excels at parallel I/O and parallel CPU programming, data-oriented programming, and algorithmic development.

Scala is a general-purpose programming and scripting language that is both functional and object-oriented. It has strong static types and supports numerous functional language techniques such as pattern matching, lazy evaluation, currying, algebraic types, immutability and tail recursion. Scala -- from "scalable language" -- enables coders to write extremely concise source code. The code is compiled into Java bytecode and executes on the ubiquitous JVM (Java virtual machine).

Like Scala, Clojure also runs on the Java virtual machine. Because it is based on Lisp, it treats code like data and supports macros. Clojure's immutability features and time-progression constructs enable the creation of robust multithreaded programs.

Erlang is a highly concurrent language and runtime. Initially created by Ericsson to enable real-time, fault-tolerant, distributed applications, Erlang code can be altered without halting the system. The language has a functional subset with single assignment, dynamic typing, and eager evaluation. Erlang has powerful explicit support for concurrent processes.

 

Computer Programming as a Career?

What little habits make you a better software engineer?

Once again Java tops C as the number one sought after programming language on the internet.  According TIOBE Programming Community Index for February 2013 and five search engines: Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu, Java regained its position after being bumped by C in May 2012.

Despite the recent urging by the U.S. Department of Homeland Security of computer users to disable or uninstall Java due to a flaw in Runtime Environment (JRE) 7, Java, has increased its market share of all languages by (+2.03%) in the past six months. The jump in Java’s popularity does not come as a surprise as the Android OS claims massive success in the mobile space.  The top twelve programming languages listed in the index are:

  1.  Java
  2.  C
  3.  Objective-C 
  4.  C++
  5.  C#
  6.  PHP
  7.  Python
  8.  (Visual) Basic
  9.  Perl
  10.  Ruby
  11. Java Script
  12. Visual Basic.NET

Also rising, Python and PHP which are competing to becoming the most popular interpreted language.

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Germany since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Oracle, MySQL, Cassandra, Hadoop Database programming
  • Get your questions answered by easy to follow, organized Oracle, MySQL, Cassandra, Hadoop Database experts
  • Get up to speed with vital Oracle, MySQL, Cassandra, Hadoop Database programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Berlin, Germany Oracle, MySQL, Cassandra, Hadoop Database Training , Berlin, Germany Oracle, MySQL, Cassandra, Hadoop Database Training Classes, Berlin, Germany Oracle, MySQL, Cassandra, Hadoop Database Training Courses, Berlin, Germany Oracle, MySQL, Cassandra, Hadoop Database Training Course, Berlin, Germany Oracle, MySQL, Cassandra, Hadoop Database Training Seminar
training locations
Germany cities where we offer Oracle, MySQL, Cassandra, Hadoop Database Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.