.NET Training Classes in Annapolis, Maryland

Learn .NET in Annapolis, Maryland and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current .NET related training offerings in Annapolis, Maryland: .NET Training

We offer private customized training for groups of 3 or more attendees.
Annapolis  Upcoming Instructor Led Online and Public .NET Training Classes
Go Language Essentials Training/Class 29 July, 2024 - 1 August, 2024 $1590
HSG Training Center instructor led online
Annapolis, Maryland 21401
Hartmann Software Group Training Registration
ASP.NET Core MVC, Rev. 6.0 Training/Class 22 April, 2024 - 23 April, 2024 $790
HSG Training Center instructor led online
Annapolis, Maryland 21401
Hartmann Software Group Training Registration
Object-Oriented Programming in C# Rev. 6.1 Training/Class 24 June, 2024 - 28 June, 2024 $2090
HSG Training Center instructor led online
Annapolis, Maryland 21401
Hartmann Software Group Training Registration

.NET Training Catalog

cost: $ 1890length: 4 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 1390length: 3 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1685length: 4 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1590length: 4 day(s)
cost: $ 890length: 1 day(s)
cost: contact us for pricing length: day(s)
cost: $ 1090length: 3 day(s)
cost: $ 1590length: 4 day(s)
cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2090length: 4 day(s)

C# Programming Classes

cost: $ 890length: 2 day(s)
cost: $ 790length: 2 day(s)
cost: $ 990length: 2 day(s)
cost: $ 2090length: 5 day(s)

Design Patterns Classes

cost: $ 1750length: 3 day(s)

F# Programming Classes

cost: $ 790length: 2 day(s)

JUnit, TDD, CPTC, Web Penetration Classes

Microsoft Development Classes

cost: $ 790length: 2 day(s)

Microsoft Windows Server Classes

cost: $ 3200length: 9 day(s)

SharePoint Classes

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

As part of our C++ Tutorials series, here is a free overview of C++ pointers you may enjoy and find beneficial.

C++ Pointers Tutorials

As part of our Java Tutorials program, we will list a number of interview questions to aid in a better understaing of Java and J2EE and, hopefully, provide a greater likelihood of getting a job.  Let us begin with the basics:

1. What is meant by J2EE?

J2EE is an abreviation for Java 2 Platform Enterprise Edition

2.  What is the purpose of J2EE?

The purpose of J2EE is to provide a component based platform in a multitier application model with transaction management, web services and reusable component support.

3.  What is the tier structure of the typical J2EE application?

A typical J2EE application consists of the following tiers/machines:  the client machine (browser/non-browser application), the J2EE server (an application server such as Oracle, JBoss, GlassFish, Tomcat) and a database.

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

Many individuals are looking to break into a video game designing career, and it's no surprise. A $9 billion industry, the video game designing business has appeal to gamers and non-gamers alike. High salaries and high rates of job satisfaction are typical in the field.

In order to design video games, however, you need a certain skill set. Computer programming is first on the list. While games are made using almost all languages, the most popular programming language for video games is C++, because of its object-oriented nature and because it compiles to binary. The next most popular languages for games are C and Java, but others such as C# and assembly language are also used. A strong background in math is usually required to learn these languages. Individuals wishing to design games should also have an extensive knowledge of both PCs and Macs.

There are many colleges and universities that offer classes not only in programming but also classes specifically on game design. Some of these schools have alliances with game developing companies, leading to jobs for students upon graduation. Programming video games can be lucrative. The average game designer's salary is $62,500, with $55,000 at the low end and $85,000 at the high end.

Programmers are not the only individuals needed to make a video game, however. There are multiple career paths within the gaming industry, including specialists in audio, design, production, visual arts and business.

Designing a video game can be an long, expensive process. The average budget for a modern multiplatform video game is $18-$28 million, with some high-profile games costing as much as $40 million. Making the game, from conception to sale, can take several months to several years. Some games have taken a notoriously long time to make; for example, 3D Realms' Duke Nukem Forever was announced in April 1997 and did not make it to shelves until July 2011.

Video game programmers have a high level of job satisfaction. In a March 2013 survey conducted by Game Developer magazine, 29 percent of game programmers were very satisfied with their jobs, and 39 percent were somewhat satisfied.

If you're interested in a game development career, now's the time to get moving. Take advantage of the many online resources available regarding these careers and start learning right away.

Tech Life in Maryland

Maryland has several historic and renowned private colleges and universities such as St. John?s College, Washington College, Towson University, and the University of Maryland Baltimore, the most prominent of which is Johns Hopkins University. The city of Annapolis, is known as the sailing capital of the world. The Tech Council of Maryland (TCM), Maryland?s largest trade association for technology and life science companies, announced in October 2013 that Rockville, Md. based IT services firm Optimal Networks, was the winner of the organization?s first annual ?Outstanding Place to Work? award, Portal Solutions, a Rockville-based technology services firm and DMI, in Bethesda, were runners up.
A market is never saturated with a good product, but it is very quickly saturated with a bad one. Henry Ford
other Learning Options
Software developers near Annapolis have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Maryland that offer opportunities for .NET developers
Company Name City Industry Secondary Industry
McCormick and Company, Incorporated Sparks Wholesale and Distribution Grocery and Food Wholesalers
USEC Inc. Bethesda Manufacturing Manufacturing Other
Coventry Health Care, Inc. Bethesda Healthcare, Pharmaceuticals and Biotech Healthcare, Pharmaceuticals, and Biotech Other
Host Hotels and Resorts, Inc. Bethesda Travel, Recreation and Leisure Hotels, Motels and Lodging
W.R. Grace and Co. Columbia Agriculture and Mining Farming and Ranching
Discovery Communications, Inc. Silver Spring Media and Entertainment Radio and Television Broadcasting
Legg Mason, Inc. Baltimore Financial Services Financial Services Other
Marriott International Inc. Bethesda Travel, Recreation and Leisure Hotels, Motels and Lodging
Constellation Energy Resources, LLC Baltimore Energy and Utilities Gas and Electric Utilities
Lockheed Martin Corporation Bethesda Manufacturing Aerospace and Defense
T. Rowe Price Baltimore Financial Services Investment Banking and Venture Capital

training details locations, tags and why hsg

the hartmann software group advantage
A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Maryland since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about .NET programming
  • Get your questions answered by easy to follow, organized .NET experts
  • Get up to speed with vital .NET programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Annapolis, Maryland .NET Training , Annapolis, Maryland .NET Training Classes, Annapolis, Maryland .NET Training Courses, Annapolis, Maryland .NET Training Course, Annapolis, Maryland .NET Training Seminar
training locations
Maryland cities where we offer .NET Training Classes

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.