Python Programming Training Classes in Training/San Jose,

Training Suggestions from the Experts

An Experienced Python developer must have

... an understanding of the following topics:  Map, Reduce and Filter, Numpy, Pandas, MatplotLib, File handling and Database integration.  All of these requirements assume a solid grasp of Python Idioms that include iterators, enumerators, generators and list comprehensions.  

To quickly get up to speed, we suggest you enroll in the following classes: Beginning Python and Advanced Python 3

Call for Details: 303.377.6176

Learn Python Programming in Training/San Jose and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Python Programming related training offerings in Training/San Jose: Python Programming Training

We offer private customized training for groups of 3 or more attendees.
Upcoming Instructor Led Online and Public Python Programming Training Classes
Python for Scientists Training/Class 4 August, 2025 - 8 August, 2025 $2090
HSG Training Center 1312 17th Street, Unit #2502
Denver, CO 80203 (303)377-6176
Hartmann Software Group Training Registration

Python Programming Training Catalog

cost: $ 3length: 1390 day(s)
Python continues to be a popular programming language, perhaps owing to its easy learning curve, small code footprint, and versatility for business, web, and scientific uses. Python is useful for developing custom software tools, applications, web services, and cloud applications. In this course, you'll build upon your basic Python skills, learning more advanced topics such as object-ori ...
cost: $ 1290length: 3 day(s)
The focus will be on advanced data processing and the use of scientific libraries (e.g. numPy, Panda, SciPy, Jupyter Notebooks, etc.) ...
cost: $ 1190length: 3 day(s)
In this Python training course, students already familiar with Python programming will learn advanced Python techniques such as: IPython Notebook; the Collections module; mapping and filtering; lamba functions; advanced sorting; working with regular expressions; working with databases, CSV files, JSON and XML; writing object-oriented code; testing and debugging; and learning about Unicode and ...
cost: $ 1290length: 4 day(s)
In this Python training course, students already familiar with Python programming will learn advanced Python techniques such as IPython Notebook, the Collections module, mapping and filtering, lamba functions, advanced sorting, writing object-oriented code, testing and debugging, NumPy, pandas, matplotlib, regular expressions, Unicode, text encoding and working with databases, CSV files, JSON and ...
cost: $ 1190length: 3 day(s)
This three-day course provides the student with the knowledge to create and run Python scripts that include Python-specific data structures, function, modules, and classes. ...
cost: $ 1190length: 3 day(s)
This course provides an overview of the basic to advanced features of the R programming language. It is presented as a combination of lectures and hands-on exercises. Course Topics: ... Data Science Basics ... R Language Basics ... Intermediate R ... Charting and Graphing ... Statistical Processing ... Introduction to Text Analytics and the tm Package ... Introduction to Collaborative Filtering .. ...
cost: $ 1290length: 4 day(s)
This 4 day course picks up where Introduction to Python 3 leaves off, covering some topics in more detail, and adding many new ones, with a focus on enterprise development. This is a hands-on programming class. All concepts are reinforced by informal practice during the lecture followed by lab exercises. Many labs build on earlier labs, which helps students retain the earlier material. ...
cost: $ 1290length: 4 day(s)
This four day course leads the student from the basics of writing and running Python scripts to more advanced features such as file operations, regular expressions, working with binary data, and using the extensive functionality of Python modules. Extra emphasis is placed on features unique to Python, such as tuples, array slices, and output formatting. This is a hands-on programming class. All ...
cost: $ 1890length: 4 day(s)
This course introduces the Apache Spark distributed computing engine, and is suitable for developers, data analysts, ...
cost: $ 1090length: 3 day(s)
This course introduces the Apache Spark distributed computing engine, and is suitable for developers, data analysts, ...
cost: $ 1790length: 3 day(s)
This class employs the Python modules Matplotlib, Scipy and Numpy, Pandas, Sklearn and the IPython to explore a variety of different Machine Learning algorithms. Students will gain an in depth knowledge of Advanced Python constructs and a basic understanding of Machine Learning. ...
cost: $ 790length: 2 day(s)
This is a rapid introduction to NumPy, pandas and matplotlib for experienced Python programmers who are new to those libraries. Students will learn to use NumPy to work with arrays and matrices of numbers; learn to work with pandas to analyze data; and learn to work with matplotlib from within pandas. ...
cost: $ 1690length: 4 day(s)
This is a 4 - day course that provides a ramp - up to using Python for scientific and mathematical computing. Starting with the basics, it progresses to the most important Python modules for working with data, from arrays, to statistics, to plotting result s. The material is geared ...
cost: $ 2090length: 5 day(s)
This is a 5 - day course that provides a ramp - up to using Python for data science/machine learning. Starting with the basics, it progresses to the most important Python modules for working with data, from arrays, to statistics, to plotting results. The material is geared towards data scientists and engineers. This is an intense, hands - on, programming class. All concepts are reinforced by ...
cost: $ 1290length: 4 day(s)
This course begins with an abbreviated primer on Python (language syntax, data structures, basic data processing, Python functions, modules and classes). The remainder of the course covers open source Python tools relevant to solving your day-to-day financial programming problems. Specific topics addressed include: array computation and mathematics with NumPy; statistical computation with SciPy; ...
cost: $ 2090length: 5 day(s)
This is a 5 - day course that provides a ramp - up to using Python for scientific and mathematical computing. Starting with the basics, it progresses to the most important Python modules for working with data, from arrays, to statistics, to plotting result s. The material is geared towards scientists and engineers. This is an intense, hands - on, programming class. All concepts are reinforced by ...
cost: $ 1290length: 4 day(s)
This four day course leads the student from the basics of writing and running Python scripts to more advanced features such as file operations, regular expressions, working with binary data, and using the extensive functionality of Python modules. Extra emphasis is placed on features unique to Python, such as tuples, array slices, and output formatting. This is a hands-on programming class. All ...
cost: $ 790length: 2 day(s)
This two day course covers a handful of various Python advanced topics including high level data structures, network programming, writing GUI's in Python, and CGI programming. This course is particularly well suited for programmers who are building application frameworks, integrating Python with other software, or using Python for distributed computing. ...
cost: $ 1290length: 4 day(s)
This 4 day course picks up where Python I leaves off, covering some topics in more detail, and adding many new ones, with a focus on enterprise development. This is a hands-on programming class. All concepts are reinforced by informal practice during the lecture followed by lab exercises. Many labs build on earlier labs, which helps students retain the earlier material. Audience: Advanced users, ...

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Memory management is always a priority in pretty much any programming language you would want to use. In the lower level languages such as C, there are a number of functions which help you manage the memory your application uses, but they are not the easiest to use. Some of the more modern programming languages such as Python, Ruby, Perl, and of course the subject of this article, Javascript all have a built in feature called garbage collection.

 

Garbage collection essentially means that the languages compiler will automatically free the memory being occupied by unused variables and objects, but there is no telling when this could occur. It is purely down to the compiler to decide when the garbage collection process should be initiated.

 

data dictionary workThe mainstay of a corporation is the data that it possesses. By data, I mean its customer base, information about the use of its products, employee roles and responsibilities, the development and maintenance of its product lines, demographics of supporters and naysayers, financial records, projected sales ... It is in the organization of this data that advancements to the bottom line are often realized i.e. the nuggets of gold are found. Defining what is important, properly cataloging the information, developing a comprehensive protocol to access and update this information and discerning how this data fits into the corporate venacular is basis of this data organization and may be the difference between moving ahead of the competition or being the one to fall behind.

Whenever we attempt to develop an Enterprise Rule Application, we must begin by harvesting the data upon which those rules are built. This is by no means an easy feat as it requires a thorough understanding of the business, industry, the players and their respective roles and the intent of the application. Depending upon the scope of this undertaking, it is almost always safe to say that no one individual is completely knowledgeable to all facets needed to comprise the entire application.data dictionary

The intial stage of this endeavor is, obviously, to decide upon the intent of the application. This requires knowledge of what is essential, what is an add-on and which of all these requirements/options can be successfully implemented in the allotted period of time. The importance of this stage cannot be stressed enough; if the vision/goal cannot be articulated in a manner that all can understand, the knowledge tap will be opened to become the money drain. Different departments may compete for the same financial resources; management may be jockeying for their day in the sun; consulting corporations, eager to win the bid, may exaggerate their level of competency. These types of endeavors require those special skills of an individual or a team of very competent members to be/have a software architect, subject matter expert and business analyst.

Once the decision has been made and the application development stages have been defined, the next step is to determine which software development tools to employ. For the sake of this article, we will assume that the team has chosen an object oriented language such as Java and a variety of J EE components, a relationsional database and a vendor specific BRMS such as Blaze Advisor. Now, onto the point of this article.

Machine learning systems are equipped with artificial intelligence engines that provide these systems with the capability of learning by themselves without having to write programs to do so. They adjust and change programs as a result of being exposed to big data sets. The process of doing so is similar to the data mining concept where the data set is searched for patterns. The difference is in how those patterns are used. Data mining's purpose is to enhance human comprehension and understanding. Machine learning's algorithms purpose is to adjust some program's action without human supervision, learning from past searches and also continuously forward as it's exposed to new data.

The News Feed service in Facebook is an example, automatically personalizing a user's feed from his interaction with his or her friend's posts. The "machine" uses statistical and predictive analysis that identify interaction patterns (skipped, like, read, comment) and uses the results to adjust the News Feed output continuously without human intervention. 

Impact on Existing and Emerging Markets

The NBA is using machine analytics created by a California-based startup to create predictive models that allow coaches to better discern a player's ability. Fed with many seasons of data, the machine can make predictions of a player's abilities. Players can have good days and bad days, get sick or lose motivation, but over time a good player will be good and a bad player can be spotted. By examining big data sets of individual performance over many seasons, the machine develops predictive models that feed into the coach’s decision-making process when faced with certain teams or particular situations. 

General Electric, who has been around for 119 years is spending millions of dollars in artificial intelligence learning systems. Its many years of data from oil exploration and jet engine research is being fed to an IBM-developed system to reduce maintenance costs, optimize performance and anticipate breakdowns.

Over a dozen banks in Europe replaced their human-based statistical modeling processes with machines. The new engines create recommendations for low-profit customers such as retail clients, small and medium-sized companies. The lower-cost, faster results approach allows the bank to create micro-target models for forecasting service cancellations and loan defaults and then how to act under those potential situations. As a result of these new models and inputs into decision making some banks have experienced new product sales increases of 10 percent, lower capital expenses and increased collections by 20 percent. 

Emerging markets and industries

By now we have seen how cell phones and emerging and developing economies go together. This relationship has generated big data sets that hold information about behaviors and mobility patterns. Machine learning examines and analyzes the data to extract information in usage patterns for these new and little understood emergent economies. Both private and public policymakers can use this information to assess technology-based programs proposed by public officials and technology companies can use it to focus on developing personalized services and investment decisions.

Machine learning service providers targeting emerging economies in this example focus on evaluating demographic and socio-economic indicators and its impact on the way people use mobile technologies. The socioeconomic status of an individual or a population can be used to understand its access and expectations on education, housing, health and vital utilities such as water and electricity. Predictive models can then be created around customer's purchasing power and marketing campaigns created to offer new products. Instead of relying exclusively on phone interviews, focus groups or other kinds of person-to-person interactions, auto-learning algorithms can also be applied to the huge amounts of data collected by other entities such as Google and Facebook.

A warning

Traditional industries trying to profit from emerging markets will see a slowdown unless they adapt to new competitive forces unleashed in part by new technologies such as artificial intelligence that offer unprecedented capabilities at a lower entry and support cost than before. But small high-tech based companies are introducing new flexible, adaptable business models more suitable to new high-risk markets. Digital platforms rely on algorithms to host at a low cost and with quality services thousands of small and mid-size enterprises in countries such as China, India, Central America and Asia. These collaborations based on new technologies and tools gives the emerging market enterprises the reach and resources needed to challenge traditional business model companies.

Sometimes we have to repeat ourselves before we are heard. Then again there are times where we have to perform a certain action the same way several times before we can carry on with what we want to do.

Repetition is the keyword here and for humans that is something we generally try to avoid. Yet our digital friends love repetition. They never get tired and they never get bored of doing the same thing over and over again countless times.

So it’s little wonder then that all modern programming languages give us various ways in which we can perform a certain action as many times as we need.

In python we have the for statement which gives us the power to loop over large collections of data very quickly and efficiently.

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Python Programming programming
  • Get your questions answered by easy to follow, organized Python Programming experts
  • Get up to speed with vital Python Programming programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Training/San Jose,  Python Programming Training , Training/San Jose,  Python Programming Training Classes, Training/San Jose,  Python Programming Training Courses, Training/San Jose,  Python Programming Training Course, Training/San Jose,  Python Programming Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.