C Programming Training Classes in Westland, Michigan

Learn C Programming in Westland, Michigan and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current C Programming related training offerings in Westland, Michigan: C Programming Training

We offer private customized training for groups of 3 or more attendees.

C Programming Training Catalog

cost: $ 1190length: 3 day(s)
cost: $ 2090length: 5 day(s)
cost: $ 2090length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Memory management is always a priority in pretty much any programming language you would want to use. In the lower level languages such as C, there are a number of functions which help you manage the memory your application uses, but they are not the easiest to use. Some of the more modern programming languages such as Python, Ruby, Perl, and of course the subject of this article, Javascript all have a built in feature called garbage collection.

 

Garbage collection essentially means that the languages compiler will automatically free the memory being occupied by unused variables and objects, but there is no telling when this could occur. It is purely down to the compiler to decide when the garbage collection process should be initiated.

 

On March 6 of this year, Microsoft's .NET Foundation released its third preview release of .NET Core 3 — which is its free and open-source framework for developing apps on Windows, MacOS and Linux — with an official release scheduled for later this year. This release brings a wealth of new features and enhancements. This includes the following: 
 
1. Windows Desktop Support
 
One of the biggest additions to version 3.0 of the framework is the ability to develop Windows desktop applications. The new Windows Desktop component lets you build applications using either the Windows Presentation Foundation (WPF) graphical subsystem or the Windows Forms graphical class library. You can also use Windows UI XAML Library (WinUI) controls in your applications. 
 
The Windows Desktop component is only supported and included on Windows installs. 
 
2. Support for C# 8
 
The new framework has support for C# 8, which includes not only the ability to create asynchronous steams but features such as: 
 
Index and Range data types
Using declarations
Switch expressions
 
The Index and Range data types make array manipulation easier, while Using declarations ensure that your objects get disposed once they are out of scope. Finally, Switch expressions extend Switch statements by allowing you to return a value. 
 
3. IEEE Floating-Point Improvements
 
The new framework includes floating point APIs that comply with IEEE 754-2008. This includes fixes to both formatting and parsing as well as new Math APIs such as: 
 
BitIncrement/BitDecrement
MaxMagnitude/MinMagnitude
ILogB
ScaleB
Log2
FusedMultiplyAdd
CopySign
 
4. Support for Performance-Oriented CPU Instructions
 
The new framework includes support for both SIMD and Bit Manipulation instruction sets, which can create significant performance boosts in certain situations, such as when you are processing data in parallel. 
 
5. Default Executables
 
With the new framework, you can now produce framework-dependent executables by default without having to use self-contained deployments. 
 
6. Local dotnet Tools
 
In the previous version of the framework, there was support for global dotnet tools. But the current version adds support for local tools as well. These tools are associated with a specific disk location, and this allows you to enable per-repository and per-project tooling. 
 
7. Support for MSIX Deployments
 
The new framework supports MSIX, which is a Windows app package format that you can use when deploying Windows desktop applications. 
 
8. Built-In and Fast JSON Support
 
In prior versions of the framework, you had to use Json.NET if you wanted JSON support in your application. The framework, though, now has built-in support that is not only fast but also has low allocation requirements. It also adds 3 new JSON types, which include: 
 
Utf8JsonReader
Utf8JsonWriter
JsonDocument
 
9. Cryptography Support
 
The new framework supports AES-GCM and AES-CCM ciphers. It also supports the importing and exporting of asymmetric public and private keys from a variety of formats without the need of an X.509 certificate. 
 
Platform Support
 
.NET Core 3 supports the following operating systems: 
 
Alpine: 3.8+
Debian: 9+
Fedora: 26+
macOS: 10.12+
openSUSE: 42.3+
RHEL: 6+
SLES: 12+
Ubuntu: 16.04+
Windows Clients: 7, 8.1, 10 (1607+)
Windows Servers: 2012 R2 SP1+
 
The framework further supports the following chips: 
 
x64 (Windows, macOS and Linux)
x86 (Windows)
ARM32 (Windows and Linux)
ARM64 (Linux)
 Jump to top
 

F# is excellent for specialties such as scientific computing and data analysis. It is an excellent choice for enterprise development as well. There are a few great reasons why you should consider using F# for your next project.

Concise

F# is not cluttered up with coding noise;  no pesky semicolons, curly brackets, and so on. You almost never have to specify the kind of object you're referencing because of its powerful type inference system. It usually takes fewer lines of code to solve the same issue.

Convenient

Common programming tasks are much easier in F#. These include generating and using state machines, comparison and equality, list processing, as well as complex type definitions. It is very easy to generate powerful and reusable code because functions are first class objects. This is done by creating functions that have other functions as parameters or that combine existing functions to generate a new functionality.

Correctness

F# has a strong type system, and, therefore, prevents many common errors such as null reference exceptions. Valuables are immutable by default which, too, prevents a huge class of errors. You can also encode business logic by utilizing the type system. When done correctly, it is impossible to mix up units of measure or to write incorrect code thereby decresing the need of unit tests.

Concurrency

F# has number of built-in libraries. These libraries help when more than one thing at a time is occurring. Parallelism and asynchronous programming are very simple. There is also a built-in actor model as well as excellent support for event handling and functional reactive programming. Sharing state and avoiding locks are much easier because data structures are immutable by default.

Completeness

F# also supports other styles that are not 100 percent pure. This makes it easier to interact with the non-pure world of databases, websites, other applications, and so on. It is actually designed as a hybrid functional/OO language. F# is also part of the .NET ecosystem. This gives you seamless access to all the third party .NET tools and libraries. It operates on most platforms. These platforms include Linux and smartphones via mono. Visual Studio is integrates with F# as well. This means you get many plug-ins for unit tests, a debugger, a IDE with IntelliSense support, other development tasks. You can use MonoDevelop IDE on Linux.

Related:

F# - Marching Towards Top 10 Programming Languages

What Are the Advantages of Python Over Ruby?

Top 10 Programming Languages Expected To Be In Demand in 2014

I will begin our blog on Java Tutorial with an incredibly important aspect of java development:  memory management.  The importance of this topic should not be minimized as an application's performance and footprint size are at stake.

From the outset, the Java Virtual Machine (JVM) manages memory via a mechanism known as Garbage Collection (GC).  The Garbage collector

  • Manages the heap memory.   All obects are stored on the heap; therefore, all objects are managed.  The keyword, new, allocates the requisite memory to instantiate an object and places the newly allocated memory on the heap.  This object is marked as live until it is no longer being reference.
  • Deallocates or reclaims those objects that are no longer being referened. 
  • Traditionally, employs a Mark and Sweep algorithm.  In the mark phase, the collector identifies which objects are still alive.  The sweep phase identifies objects that are no longer alive.
  • Deallocates the memory of objects that are not marked as live.
  • Is automatically run by the JVM and not explicitely called by the Java developer.  Unlike languages such as C++, the Java developer has no explict control over memory management.
  • Does not manage the stack.  Local primitive types and local object references are not managed by the GC.

So if the Java developer has no control over memory management, why even worry about the GC?  It turns out that memory management is an integral part of an application's performance, all things being equal.  The more memory that is required for the application to run, the greater the likelihood that computational efficiency suffers. To that end, the developer has to take into account the amount of memory being allocated when writing code.  This translates into the amount of heap memory being consumed.

Memory is split into two types:  stack and heap.  Stack memory is memory set aside for a thread of execution e.g. a function.  When a function is called, a block of memory is reserved for those variables local to the function, provided that they are either a type of Java primitive or an object reference.  Upon runtime completion of the function call, the reserved memory block is now available for the next thread of execution.  Heap memory, on the otherhand, is dynamically allocated.  That is, there is no set pattern for allocating or deallocating this memory.  Therefore, keeping track or managing this type of memory is a complicated process. In Java, such memory is allocated when instantiating an object:

String s = new String();  // new operator being employed
String m = "A String";    /* object instantiated by the JVM and then being set to a value.  The JVM
calls the new operator */

Tech Life in Michigan

Home of the Ford Motor Company and many other Fortune 500 and Fortune 1000 Companies, Michigan has a list of famous people that have made their mark on society. Famous Michiganians: Francis Ford Coppola film director; Henry Ford industrialist, Earvin Magic Johnson basketball player; Charles A. Lindbergh aviator; Madonna singer; Stevie Wonder singer; John T. Parsons inventor and William R. Hewlett inventor.
Leadership and learning are indispensable to each other. John F. Kennedy
other Learning Options
Software developers near Westland have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Michigan that offer opportunities for C Programming developers
Company Name City Industry Secondary Industry
Lear Corporation Southfield Manufacturing Automobiles, Boats and Motor Vehicles
TRW Automotive Holdings Corp. Livonia Manufacturing Automobiles, Boats and Motor Vehicles
Spartan Stores, Inc. Byron Center Retail Grocery and Specialty Food Stores
Steelcase Inc. Grand Rapids Manufacturing Furniture Manufacturing
Valassis Communications, Inc. Livonia Business Services Advertising, Marketing and PR
Autoliv, Inc. Auburn Hills Manufacturing Automobiles, Boats and Motor Vehicles
Cooper-Standard Automotive Group Novi Manufacturing Automobiles, Boats and Motor Vehicles
Penske Automotive Group, Inc. Bloomfield Hills Retail Automobile Dealers
Con-Way Inc. Ann Arbor Transportation and Storage Freight Hauling (Rail and Truck)
Meritor, Inc. Troy Manufacturing Automobiles, Boats and Motor Vehicles
Visteon Corporation Van Buren Twp Manufacturing Automobiles, Boats and Motor Vehicles
Affinia Group, Inc. Ann Arbor Manufacturing Automobiles, Boats and Motor Vehicles
Perrigo Company Allegan Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
BorgWarner Inc. Auburn Hills Manufacturing Automobiles, Boats and Motor Vehicles
Auto-Owners Insurance Lansing Financial Services Insurance and Risk Management
DTE Energy Company Detroit Energy and Utilities Gas and Electric Utilities
Whirlpool Corporation Benton Harbor Manufacturing Tools, Hardware and Light Machinery
Herman Miller, Inc. Zeeland Manufacturing Furniture Manufacturing
Universal Forest Products Grand Rapids Manufacturing Furniture Manufacturing
Masco Corporation Inc. Taylor Manufacturing Concrete, Glass, and Building Materials
PULTEGROUP, INC. Bloomfield Hills Real Estate and Construction Real Estate & Construction Other
CMS Energy Corporation Jackson Energy and Utilities Energy and Utilities Other
Stryker Corporation Portage Healthcare, Pharmaceuticals and Biotech Medical Devices
General Motors Company (GM) Detroit Manufacturing Automobiles, Boats and Motor Vehicles
Kellogg Company Battle Creek Manufacturing Food and Dairy Product Manufacturing and Packaging
The Dow Chemical Company Midland Manufacturing Chemicals and Petrochemicals
Kelly Services, Inc. Troy Business Services HR and Recruiting Services
Ford Motor Company Dearborn Manufacturing Automobiles, Boats and Motor Vehicles

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Michigan since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about C Programming programming
  • Get your questions answered by easy to follow, organized C Programming experts
  • Get up to speed with vital C Programming programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Westland, Michigan C Programming Training , Westland, Michigan C Programming Training Classes, Westland, Michigan C Programming Training Courses, Westland, Michigan C Programming Training Course, Westland, Michigan C Programming Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.