Cloud Training Classes in Columbus, Ohio

Learn Cloud in Columbus, Ohio and surrounding areas via our hands-on, expert led courses. All of our classes are offered on an onsite, online and public instructor led basis. Here is a list of our current Cloud related training offerings in Columbus, Ohio: Cloud Training

Get pricing information (3 or more students may receive a discount)
Contact us to discuss our pricing structure for groups of 3 or more attendees.

Cloud Training Catalog

subcategories

cost: $ 1670length: 3 day(s)
cost: $ 450length: 1 day(s)
cost: $ 1190length: 3 day(s)

AWS Classes

cost: $ 1670length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes

Blog Entries publications that: entertain, make you think, offer insight

Java still has its place in the world of software development, but is it quickly becoming obsolete by the more dynamically enabled Python programming language? The issue is hotly contested by both sides of the debate. Java experts point out that Java is still being developed with more programmer friendly updates. Python users swear that Java can take up to ten times longer to develop. Managers that need to make the best decision for a company need concrete information so that an informed and rational decision can be made.

First, Java is a static typed language while Python is dynamically typed. Static typed languages require that each variable name must be tied to both a type and an object. Dynamically typed languages only require that a variable name only gets bound to an object. Immediately, this puts Python ahead of the game in terms of productivity since a static typed language requires several elements and can make errors in coding more likely.

Python uses a concise language while Java uses verbose language. Concise language, as the name suggests, gets straight to the point without extra words. Removing additional syntax can greatly reduce the amount of time required to program.  A simple call in Java, such as the ever notorious "Hello, World" requires three several lines of coding while Python requires a single sentence. Java requires the use of checked exceptions. If the exceptions are not caught or thrown out then the code fails to compile. In terms of language, Python certainly has surpassed Java in terms of brevity.

Additionally, while Java's string handling capabilities have improved they haven't yet matched the sophistication of Python's. Web applications rely upon fast load times and extraneous code can increase user wait time. Python optimizes code in ways that Java doesn't, and this can make Python a more efficient language. However, Java does run faster than Python and this can be a significant advantage for programmers using Java. When you factor in the need for a compiler for Java applications the speed factor cancels itself out leaving Python and Java at an impasse.

While a programmer will continue to argue for the language that makes it easiest based on the programmer's current level of knowledge, new software compiled with Python takes less time and provides a simplified coding language that reduces the chance for errors. When things go right, Java works well and there are no problems. However, when errors get introduced into the code, it can become extremely time consuming to locate and correct those errors. Python generally uses less code to begin with and makes it easier and more efficient to work with.

Ultimately, both languages have their own strengths and weaknesses. For creating simple applications, Python provides a simpler and more effective application. Larger applications can benefit from Java and the verbosity of the code actually makes it more compatible with future versions. Python code has been known to break with new releases. Ultimately, Python works best as a type of connecting language to conduct quick and dirty work that would be too intensive when using Java alone. In this sense, Java is a low-level implementation language. While both languages are continuing to develop, it's unlikely that one language will surpass the other for all programming needs in the near future.

In the ever changing landscape of software programming, it is not surprising that developers and employees have a different set of preferences for desired skills.  However the number one language that developers want to learn according to a survey of developers by technical recruiter, Hacker Rank is Python. This is not a surprise considering that Python has been in demand for several years and programmers tend to really enjoy this language for clear syntax, good OOP support and great shortcuts. Python, named “the language of the year” in 2007 and 2010 in the TIOBE Index and has climbed to #4 status in May of 2018.

According to the study, employers want developers who:

-  Have problem-solving skills, such as the ability to break down large, complex problems.
- Are proficient in their programming language and debugging.
- Can design systems.
- Can optimize performance.
- Have experience in reviewing and testing code.
- Are proficient in database design

Surprisingly, formal education is not the deciding factor when it comes to what companies care about the most. People with computer degrees or certifications on a resume are not necessarily a first choice for hiring managers. Others that have years of experience even if those individuals are partially self-taught in the field stand to be taken seriously in the field.   For those individuals with a passion to learn and master a skill, there are ample opportunities with smaller to mid-sized companies.

Some interesting FAQ’s from the study:

    On average, developers know 4 languages, and they aspire to learn 4 more.
    Younger developers between 18 and 24 plan to learn 6 languages.
    Folks older than 35 only plan to learn and additional 3 languages.
    The top languages developers said they will learn were, Go, Python, Scala, Kotlin, and Ruby.
    There is a large gap between employers seeking developers that know React than there are folks that can do it.

So, Why Learn Python?
It is now the most popular introductory teaching language in U.S. universities.  Python is easy to use, powerful, and versatile, making it a great choice for beginners and experts alike. It allows you to think like a programmer and not waste time understanding difficult syntax that other programming languages can command. And, because of its rapid growth, many developers contribute to the Python community and share Python libraries making creativity that much more a reality

It is said that spoken languages shape thoughts by their inclusion and exclusion of concepts, and by structuring them in different ways. Similarly, programming languages shape solutions by making some tasks easier and others less aesthetic. Using F# instead of C# reshapes software projects in ways that prefer certain development styles and outcomes, changing what is possible and how it is achieved.

F# is a functional language from Microsoft's research division. While once relegated to the land of impractical academia, the principles espoused by functional programming are beginning to garner mainstream appeal.

As its name implies, functions are first-class citizens in functional programming. Blocks of code can be stored in variables, passed to other functions, and infinitely composed into higher-order functions, encouraging cleaner abstractions and easier testing. While it has long been possible to store and pass code, F#'s clean syntax for higher-order functions encourages them as a solution to any problem seeking an abstraction.

F# also encourages immutability. Instead of maintaining state in variables, functional programming with F# models programs as a series of functions converting inputs to outputs. While this introduces complications for those used to imperative styles, the benefits of immutability mesh well with many current developments best practices.

For instance, if functions are pure, handling only immutable data and exhibiting no side effects, then testing is vastly simplified. It is very easy to test that a specific block of code always returns the same value given the same inputs, and by modeling code as a series of immutable functions, it becomes possible to gain a deep and highly precise set of guarantees that software will behave exactly as written.

Further, if execution flow is exclusively a matter of routing function inputs to outputs, then concurrency is vastly simplified. By shifting away from mutable state to immutable functions, the need for locks and semaphores is vastly reduced if not entirely eliminated, and multi-processor development is almost effortless in many cases.

Type inference is another powerful feature of many functional languages. It is often unnecessary to specify argument and return types, since any modern compiler can infer them automatically. F# brings this feature to most areas of the language, making F# feel less like a statically-typed language and more like Ruby or Python. F# also eliminates noise like braces, explicit returns, and other bits of ceremony that make languages feel cumbersome.

Functional programming with F# makes it possible to write concise, easily testable code that is simpler to parallelize and reason about. However, strict functional styles often require imperative developers to learn new ways of thinking that are not as intuitive. Fortunately, F# makes it possible to incrementally change habits over time. Thanks to its hybrid object-oriented and functional nature, and its clean interoperability with the .net platform, F# developers can gradually shift to a more functional mindset while still using the algorithms and libraries with which they are most familiar.

 

Related F# Resources:

F# Programming Essentials Training

C# PROGRAMMING –MAIN DESIGN GOALS

C# is a popular programming language these days, and it was designed from inception to provide a simple, clean, general purpose programming language for those intending to work within the confines of Microsoft’s .NET framework.  Since then, it has been approved as one of the standard languages by both ECMA and ISO, making C# programming an essential tool in every programmers’ kit.

Different languages have different uses and specialties, and C# was designed for programmers to be able to use it to create different components for use in software that would be deployed and distributed en masse, to live use environments.  This means that designers had to really put an emphasis on making the actual source code extremely compatible and portable.  Those already familiar with C or C++ should definitely notice this emphasis.

Another particular point of emphasis during design was focus on internationalization of the language; it was intended from inception to be available all over the world, and to see all sorts of different implementations based on variance in regional programming technique.  The resultant use should help the language develop sophistication as it is refined throughout different versions.

Tech Life in Ohio

Ulysses S. Grant, Rutherford B. Hayes, James A. Garfield, Benjamin Harrison, William McKinley, William H. Taft, and Warren G. Harding, were all U.S. Presidents born in Ohio. The first recognized university in Ohio was Ohio University founded in 1804. It wasn?t long until the first interracial and coeducational college in the United States, Oberlin, was founded in 1833. The Buckeye State produced some interesting discoveries such as: Charles Goodyear discovering the process of vulcanizing rubber in 1839; Roy J. Plunkett inventing Teflon in 1938; and Charles Kettering inventing the automobile self-starter in 1911.
What we hope ever to do with ease, we must learn first to do with diligence. Samuel Johnson
other Learning Options
Software developers near Columbus have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Ohio that offer opportunities for Cloud developers
Company Name City Industry Secondary Industry
Nationwide Insurance Company Columbus Financial Services Insurance and Risk Management
Owens Corning Toledo Manufacturing Concrete, Glass, and Building Materials
FirstEnergy Corp Akron Energy and Utilities Gas and Electric Utilities
The Lubrizol Corporation Wickliffe Manufacturing Chemicals and Petrochemicals
Sherwin-Williams Cleveland Retail Hardware and Building Material Dealers
Key Bank Cleveland Financial Services Banks
TravelCenters of America, Inc. Westlake Retail Gasoline Stations
Dana Holding Company Maumee Manufacturing Automobiles, Boats and Motor Vehicles
O-I (Owens Illinois), Inc. Perrysburg Manufacturing Concrete, Glass, and Building Materials
Big Lots Stores, Inc. Columbus Retail Department Stores
Limited Brands, Inc. Columbus Retail Clothing and Shoes Stores
Cardinal Health Dublin Healthcare, Pharmaceuticals and Biotech Healthcare, Pharmaceuticals, and Biotech Other
Progressive Corporation Cleveland Financial Services Insurance and Risk Management
Parker Hannifin Corporation Cleveland Manufacturing Manufacturing Other
American Financial Group, Inc. Cincinnati Financial Services Insurance and Risk Management
American Electric Power Company, Inc Columbus Energy and Utilities Gas and Electric Utilities
Fifth Third Bancorp Cincinnati Financial Services Banks
Macy's, Inc. Cincinnati Retail Department Stores
Goodyear Tire and Rubber Co. Akron Manufacturing Plastics and Rubber Manufacturing
The Kroger Co. Cincinnati Retail Grocery and Specialty Food Stores
Omnicare, Inc. Cincinnati Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
The Procter and Gamble Company Cincinnati Consumer Services Personal Care

the hsg library depth in learning

training details locations, tags and why hsg

the hartmann software group advantage
A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Ohio since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Cloud programming
  • Get your questions answered by easy to follow, organized Cloud experts
  • Get up to speed with vital Cloud programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Columbus, Ohio Cloud Training , Columbus, Ohio Cloud Training Classes, Columbus, Ohio Cloud Training Courses, Columbus, Ohio Cloud Training Course, Columbus, Ohio Cloud Training Seminar