Machine Learning Training Classes in Mount Vernon, New York

Learn Machine Learning in Mount Vernon, NewYork and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Machine Learning related training offerings in Mount Vernon, New York: Machine Learning Training

We offer private customized training for groups of 3 or more attendees.

Machine Learning Training Catalog

cost: $ 2250length: 2.5 day(s)
cost: $ 2250length: 3 day(s)
cost: $ 3170length: 6 day(s)
cost: $ 1800length: 2 day(s)

AI Classes

cost: $ 890length: 2 day(s)

AWS Classes

Azure Classes

Business Analysis Classes

cost: $ 1200length: 3 day(s)

Python Programming Classes

cost: $ 1190length: 3 day(s)
cost: $ 1790length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

I’ve been a technical recruiter for several years, let’s just say a long time.  I’ll never forget how my first deal went bad and the lesson I learned from that experience.  I was new to recruiting but had been a very good sales person in my previous position. I was about to place my first contractor on an assignment.  I thought everything was fine.  I nurtured and guided my candidate through the interview process with constant communication throughout.  The candidate was very responsive throughout the process.  From my initial contact with him, to the phone interview all went well and now he was completing his onsite interview with the hiring manager. 

Shortly thereafter, I received the call from the hiring manager that my candidate was the chosen one for the contract position, I was thrilled.  All my hard work had paid off.  I was going to be a success at this new game!  The entire office was thrilled for me, including my co-workers and my bosses.  I made a good win-win deal.  It was good pay for my candidate and a good margin for my recruiting firm. Everyone was happy. 

I left a voicemail message for my candidate so I could deliver the good news. He had agreed to call me immediately after the interview so I could get his assessment of how well it went.  Although, I heard from the hiring manager, there was no word from him.  While waiting for his call back, I received a call from a Mercedes dealership to verify his employment for a car he was trying to lease. Technically he wasn’t working for us as he had not signed the contract yet…. nor, had he discussed this topic with me.   I told the Mercedes office that I would get back to them.  Still not having heard back from the candidate, I left him another message and mentioned the call I just received.  Eventually he called back.  He wanted more money. 

I told him that would be impossible as he and I had previously agreed on his hourly rate and it was fine with him.  I asked him what had changed since that agreement.  He said he made had made much more money in doing the same thing when he lived in California.  I reminded him this is a less costly marketplace than where he was living in California.  I told him if he signed the deal I would be able to call the car dealership back and confirm that he was employed with us.  He agreed to sign the deal. 

I will begin our blog on Java Tutorial with an incredibly important aspect of java development:  memory management.  The importance of this topic should not be minimized as an application's performance and footprint size are at stake.

From the outset, the Java Virtual Machine (JVM) manages memory via a mechanism known as Garbage Collection (GC).  The Garbage collector

  • Manages the heap memory.   All obects are stored on the heap; therefore, all objects are managed.  The keyword, new, allocates the requisite memory to instantiate an object and places the newly allocated memory on the heap.  This object is marked as live until it is no longer being reference.
  • Deallocates or reclaims those objects that are no longer being referened. 
  • Traditionally, employs a Mark and Sweep algorithm.  In the mark phase, the collector identifies which objects are still alive.  The sweep phase identifies objects that are no longer alive.
  • Deallocates the memory of objects that are not marked as live.
  • Is automatically run by the JVM and not explicitely called by the Java developer.  Unlike languages such as C++, the Java developer has no explict control over memory management.
  • Does not manage the stack.  Local primitive types and local object references are not managed by the GC.

So if the Java developer has no control over memory management, why even worry about the GC?  It turns out that memory management is an integral part of an application's performance, all things being equal.  The more memory that is required for the application to run, the greater the likelihood that computational efficiency suffers. To that end, the developer has to take into account the amount of memory being allocated when writing code.  This translates into the amount of heap memory being consumed.

Memory is split into two types:  stack and heap.  Stack memory is memory set aside for a thread of execution e.g. a function.  When a function is called, a block of memory is reserved for those variables local to the function, provided that they are either a type of Java primitive or an object reference.  Upon runtime completion of the function call, the reserved memory block is now available for the next thread of execution.  Heap memory, on the otherhand, is dynamically allocated.  That is, there is no set pattern for allocating or deallocating this memory.  Therefore, keeping track or managing this type of memory is a complicated process. In Java, such memory is allocated when instantiating an object:

String s = new String();  // new operator being employed
String m = "A String";    /* object instantiated by the JVM and then being set to a value.  The JVM
calls the new operator */

Another blanket article about the pros and cons of Direct to Consumer (D2C) isn’t needed, I know. By now, we all know the rules for how this model enters a market: its disruption fights any given sector’s established sales model, a fuzzy compromise is temporarily met, and the lean innovator always wins out in the end.

That’s exactly how it played out in the music industry when Apple and record companies created a digital storefront in iTunes to usher music sales into the online era. What now appears to have been a stopgap compromise, iTunes was the standard model for 5-6 years until consumers realized there was no point in purchasing and owning digital media when internet speeds increased and they could listen to it for free through a music streaming service.  In 2013, streaming models are the new music consumption standard. Netflix is nearly parallel in the film and TV world, though they’ve done a better job keeping it all under one roof. Apple mastered retail sales so well that the majority of Apple products, when bought in-person, are bought at an Apple store. That’s even more impressive when you consider how few Apple stores there are in the U.S. (253) compared to big box electronics stores that sell Apple products like Best Buy (1,100) Yet while some industries have implemented a D2C approach to great success, others haven’t even dipped a toe in the D2C pool, most notably the auto industry.

What got me thinking about this topic is the recent flurry of attention Tesla Motors has received for its D2C model. It all came to a head at the beginning of July when a petition on whitehouse.gov to allow Tesla to sell directly to consumers in all 50 states reached the 100,000 signatures required for administration comment. As you might imagine, many powerful car dealership owners armed with lobbyists have made a big stink about Elon Musk, Tesla’s CEO and Product Architect, choosing to sidestep the traditional supply chain and instead opting to sell directly to their customers through their website. These dealership owners say that they’re against the idea because they want to protect consumers, but the real motive is that they want to defend their right to exist (and who wouldn’t?). They essentially have a monopoly at their position in the sales process, and they want to keep it that way. More frightening for the dealerships is the possibility that once Tesla starts selling directly to consumers, so will the big three automakers, and they fear that would be the end of the road for their business. Interestingly enough, the big three flirted with the idea of D2C in the early 90’s before they were met with fierce backlash from dealerships. I’m sure the dealership community has no interest in mounting a fight like that again. 

To say that the laws preventing Tesla from selling online are peripherally relevant would be a compliment. By and large, the laws the dealerships point to fall under the umbrella of “Franchise Laws” that were put in place at the dawn of car sales to protect franchisees against manufacturers opening their own stores and undercutting the franchise that had invested so much to sell the manufacturer’s cars.  There’s certainly a need for those laws to exist, because no owner of a dealership selling Jeeps wants Chrysler to open their own dealership next door and sell them for substantially less. However, because Tesla is independently owned and isn’t currently selling their cars through any third party dealership, this law doesn’t really apply to them. Until their cars are sold through independent dealerships, they’re incapable of undercutting anyone by implementing D2C structure.

Although reports made in May 2010 indicate that Android had outsold Apple iPhones, more recent and current reports of the 2nd quarter of 2011 made by National Purchase Diary (NPD) on Mobile Phone Track service, which listed the top five selling smartphones in the United States for the months of April-June of 2011, indicate that Apple's iPhone 4 and iPhone 3GS outsold other Android phones on the market in the U. S. for the third calendar quarter of 2011. This was true for the previous quarter of the same year; The iPhone 4 held the top spot.  The fact that the iPhone 4 claimed top spot does not come as a surprise to the analysts; rather, it is a testament to them of how well the iPhone is revered among consumers. The iPhone 3GS, which came out in 2009 outsold newer Android phones with higher screen resolutions and more processing power. The list of the five top selling smartphones is depicted below:

  1. Apple iPhone 4
  2. Apple iPhone 3GS
  3. HTC EVO 4G
  4. Motorola Droid 3
  5. Samsung Intensity II[1]

Apple’s iPhone also outsold Android devices7.8:1 at AT&T’s corporate retail stores in December. A source inside the Apple company told The Mac Observer that those stores sold some 981,000 iPhones between December 1st and December 27th 2011, and that the Apple device accounted for some 66% of all device sales during that period (see the pie figure below) . Android devices, on the other hand, accounted for just 8.5% of sales during the same period.

According to the report, AT&T sold approximately 981,000 iPhones through AT&T corporate stores in the first 27 days of December, 2011 while 126,000 Android devices were sold during the same period. Even the basic flip and slider phones did better than Android, with 128,000 units sold.[2] However, it is important to understand that this is a report for one particular environment at a particular period in time. As the first iPhone carrier in the world, AT&T has been the dominant iPhone carrier in the U.S. since day one, and AT&T has consistently claimed that the iPhone is its best selling device.

Chart courtesy of Mac Observer: http://www.macobserver.com/tmo/article/iphone_crushes_android_at_att_corporate_stores_in_december/

A more recent report posted in ismashphone.com, dated January 25 2012, indicated that Apple sold 37 million iPhones in Q4 2011.  It appears that the iPhone 4S really helped take Apple’s handset past competing Android phones. According to research firm Kantar Worldpanel ComTech, Apple’s U.S. smartphone marketshare has doubled to 44.9 percent.[3] Meanwhile, Android marketshare in the U.S. dropped slightly to 44.8 percent. This report means that the iPhone has edged just a little bit past Android in U.S. marketshare. This is occurred after Apple’s Q1 2012 conference call, which saw themselling 37 million handsets. Meanwhile, it’s reported that marketers of Android devices, such as Motorola Mobility, HTC and Sony Ericsson saw drops this quarter.

Tech Life in New York

City The Big Apple is home of two of the world’s largest stock market exchanges, the New York Stock Exchange and NASDAQ. As a leading business center in the United States, New York has more Fortune 500 headquartered companies than any other city. Technology is blossoming in the Big Apple as major internet conglomerates like Google move their offices into “telecom hotels” such as the 311,000 square feet office space downtown. As in any other city there are pros and cons of living in New York City. For instance, there is so much to do, it’s easy to get around with the transit system, it’s safe, convenient, and has plenty of job opportunities. On the other hand, it can be overwhelmingly expensive, overcrowded, a bit impersonal and fast paced. New Yorkers enjoy Central Park, multi cultural activities and food, theatre, film festivals, farmers markets, fashion and anything else they could possibly think of...it’s all there.
Failure is the opportunity to begin again, more intelligently. Henry Ford
other Learning Options
Software developers near Mount Vernon have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in New York that offer opportunities for Machine Learning developers
Company Name City Industry Secondary Industry
NYSE Euronext, Inc. New York Financial Services Securities Agents and Brokers
Anderson Instrument Company Inc. Fultonville Manufacturing Tools, Hardware and Light Machinery
News Corporation New York Media and Entertainment Radio and Television Broadcasting
Philip Morris International Inc New York Manufacturing Manufacturing Other
Loews Corporation New York Travel, Recreation and Leisure Hotels, Motels and Lodging
The Guardian Life Insurance Company of America New York Financial Services Insurance and Risk Management
Jarden Corporation Rye Manufacturing Manufacturing Other
Ralph Lauren Corporation New York Retail Clothing and Shoes Stores
Icahn Enterprises, LP New York Financial Services Investment Banking and Venture Capital
Viacom Inc. New York Media and Entertainment Media and Entertainment Other
Omnicom Group Inc. New York Business Services Advertising, Marketing and PR
Henry Schein, Inc. Melville Healthcare, Pharmaceuticals and Biotech Medical Supplies and Equipment
Pfizer Incorporated New York Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
Eastman Kodak Company Rochester Computers and Electronics Audio, Video and Photography
Assurant Inc. New York Business Services Data and Records Management
PepsiCo, Inc. Purchase Manufacturing Nonalcoholic Beverages
Foot Locker, Inc. New York Retail Department Stores
Barnes and Noble, Inc. New York Retail Sporting Goods, Hobby, Book, and Music Stores
Alcoa New York Manufacturing Metals Manufacturing
The Estee Lauder Companies Inc. New York Healthcare, Pharmaceuticals and Biotech Personal Health Care Products
Avon Products, Inc. New York Healthcare, Pharmaceuticals and Biotech Personal Health Care Products
The Bank of New York Mellon Corporation New York Financial Services Banks
Marsh and McLennan Companies New York Financial Services Insurance and Risk Management
Corning Incorporated Corning Manufacturing Concrete, Glass, and Building Materials
CBS Corporation New York Media and Entertainment Radio and Television Broadcasting
Bristol Myers Squibb Company New York Healthcare, Pharmaceuticals and Biotech Biotechnology
Citigroup Incorporated New York Financial Services Banks
Goldman Sachs New York Financial Services Personal Financial Planning and Private Banking
American International Group (AIG) New York Financial Services Insurance and Risk Management
Interpublic Group of Companies, Inc. New York Business Services Advertising, Marketing and PR
BlackRock, Inc. New York Financial Services Securities Agents and Brokers
MetLife Inc. New York Financial Services Insurance and Risk Management
Consolidated Edison Company Of New York, Inc. New York Energy and Utilities Gas and Electric Utilities
Time Warner Cable New York Telecommunications Cable Television Providers
Morgan Stanley New York Financial Services Investment Banking and Venture Capital
American Express Company New York Financial Services Credit Cards and Related Services
International Business Machines Corporation Armonk Computers and Electronics Computers, Parts and Repair
TIAA-CREF New York Financial Services Securities Agents and Brokers
JPMorgan Chase and Co. New York Financial Services Investment Banking and Venture Capital
The McGraw-Hill Companies, Inc. New York Media and Entertainment Newspapers, Books and Periodicals
L-3 Communications Inc. New York Manufacturing Aerospace and Defense
Colgate-Palmolive Company New York Consumer Services Personal Care
New York Life Insurance Company New York Financial Services Insurance and Risk Management
Time Warner Inc. New York Media and Entertainment Media and Entertainment Other
Cablevision Systems Corp. Bethpage Media and Entertainment Radio and Television Broadcasting
CA Technologies, Inc. Islandia Software and Internet Software
Verizon Communications Inc. New York Telecommunications Telephone Service Providers and Carriers
Hess Corporation New York Energy and Utilities Gasoline and Oil Refineries

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in New York since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Machine Learning programming
  • Get your questions answered by easy to follow, organized Machine Learning experts
  • Get up to speed with vital Machine Learning programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Mount Vernon, New York Machine Learning Training , Mount Vernon, New York Machine Learning Training Classes, Mount Vernon, New York Machine Learning Training Courses, Mount Vernon, New York Machine Learning Training Course, Mount Vernon, New York Machine Learning Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.