Linux Unix Training Classes in Muncie, Indiana

Learn Linux Unix in Muncie, Indiana and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Linux Unix related training offerings in Muncie, Indiana: Linux Unix Training

We offer private customized training for groups of 3 or more attendees.
Muncie  Upcoming Instructor Led Online and Public Linux Unix Training Classes
Linux Fundamentals Training/Class 23 March, 2026 - 27 March, 2026 $2200
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
Linux Troubleshooting Training/Class 2 March, 2026 - 6 March, 2026 $2290
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
OpenShift Fundamentals Training/Class 9 February, 2026 - 11 February, 2026 $2250
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX AUTOMATION WITH ANSIBLE Training/Class 2 February, 2026 - 5 February, 2026 $2735
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX SYSTEMS ADMIN I Training/Class 26 January, 2026 - 30 January, 2026 $2250
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
RED HAT ENTERPRISE LINUX SYSTEMS ADMIN II Training/Class 26 January, 2026 - 29 January, 2026 $1890
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
Docker Training/Class 21 January, 2026 - 23 January, 2026 $1690
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
ANSIBLE Training/Class 18 February, 2026 - 20 February, 2026 $1990
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration
KUBERNETES ADMINISTRATION Training/Class 23 February, 2026 - 25 February, 2026 $2490
HSG Training Center instructor led online
Muncie, Indiana 47302
Hartmann Software Group Training Registration

View all Scheduled Linux Unix Training Classes

Linux Unix Training Catalog

cost: $ 1390length: 4 day(s)
cost: $ 1390length: 4 day(s)
cost: $ 1990length: 3 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2800length: 4 day(s)
cost: $ 2490length: 5 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2290length: 4 day(s)
cost: $ 2190length: 5 day(s)
cost: $ 1690length: 4 day(s)
cost: $ 1890length: 3 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2490length: 3 day(s)
cost: $ 2680length: 4 day(s)
cost: $ 2490length: 4 day(s)
cost: $ 1290length: 3 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 1090length: 3 day(s)
cost: $ 2200length: 5 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2400length: 5 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2490length: 4 day(s)
cost: $ 990length: 2 day(s)
cost: $ 2290length: 5 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 1890length: 4 day(s)
cost: $ 2400length: 4 day(s)
cost: $ 2090length: 3 day(s)
cost: $ 2250length: 3 day(s)
cost: $ 1790length: 4 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 1690length: 3 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2250length: 5 day(s)
cost: $ 2890length: 3 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1690length: 5 day(s)
cost: $ 1390length: 4 day(s)

DevOps Classes

cost: $ 1690length: 3 day(s)
cost: $ 1690length: 3 day(s)

Foundations of Web Design & Web Authoring Classes

cost: $ 1290length: 3 day(s)
cost: $ 790length: 2 day(s)
cost: $ 1190length: 3 day(s)

Java Programming Classes

cost: $ 1390length: 3 day(s)
cost: $ 1390length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Another blanket article about the pros and cons of Direct to Consumer (D2C) isn’t needed, I know. By now, we all know the rules for how this model enters a market: its disruption fights any given sector’s established sales model, a fuzzy compromise is temporarily met, and the lean innovator always wins out in the end.

That’s exactly how it played out in the music industry when Apple and record companies created a digital storefront in iTunes to usher music sales into the online era. What now appears to have been a stopgap compromise, iTunes was the standard model for 5-6 years until consumers realized there was no point in purchasing and owning digital media when internet speeds increased and they could listen to it for free through a music streaming service.  In 2013, streaming models are the new music consumption standard. Netflix is nearly parallel in the film and TV world, though they’ve done a better job keeping it all under one roof. Apple mastered retail sales so well that the majority of Apple products, when bought in-person, are bought at an Apple store. That’s even more impressive when you consider how few Apple stores there are in the U.S. (253) compared to big box electronics stores that sell Apple products like Best Buy (1,100) Yet while some industries have implemented a D2C approach to great success, others haven’t even dipped a toe in the D2C pool, most notably the auto industry.

What got me thinking about this topic is the recent flurry of attention Tesla Motors has received for its D2C model. It all came to a head at the beginning of July when a petition on whitehouse.gov to allow Tesla to sell directly to consumers in all 50 states reached the 100,000 signatures required for administration comment. As you might imagine, many powerful car dealership owners armed with lobbyists have made a big stink about Elon Musk, Tesla’s CEO and Product Architect, choosing to sidestep the traditional supply chain and instead opting to sell directly to their customers through their website. These dealership owners say that they’re against the idea because they want to protect consumers, but the real motive is that they want to defend their right to exist (and who wouldn’t?). They essentially have a monopoly at their position in the sales process, and they want to keep it that way. More frightening for the dealerships is the possibility that once Tesla starts selling directly to consumers, so will the big three automakers, and they fear that would be the end of the road for their business. Interestingly enough, the big three flirted with the idea of D2C in the early 90’s before they were met with fierce backlash from dealerships. I’m sure the dealership community has no interest in mounting a fight like that again. 

To say that the laws preventing Tesla from selling online are peripherally relevant would be a compliment. By and large, the laws the dealerships point to fall under the umbrella of “Franchise Laws” that were put in place at the dawn of car sales to protect franchisees against manufacturers opening their own stores and undercutting the franchise that had invested so much to sell the manufacturer’s cars.  There’s certainly a need for those laws to exist, because no owner of a dealership selling Jeeps wants Chrysler to open their own dealership next door and sell them for substantially less. However, because Tesla is independently owned and isn’t currently selling their cars through any third party dealership, this law doesn’t really apply to them. Until their cars are sold through independent dealerships, they’re incapable of undercutting anyone by implementing D2C structure.

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

Java still has its place in the world of software development, but is it quickly becoming obsolete by the more dynamically enabled Python programming language? The issue is hotly contested by both sides of the debate. Java experts point out that Java is still being developed with more programmer friendly updates. Python users swear that Java can take up to ten times longer to develop. Managers that need to make the best decision for a company need concrete information so that an informed and rational decision can be made.

First, Java is a static typed language while Python is dynamically typed. Static typed languages require that each variable name must be tied to both a type and an object. Dynamically typed languages only require that a variable name only gets bound to an object. Immediately, this puts Python ahead of the game in terms of productivity since a static typed language requires several elements and can make errors in coding more likely.

Python uses a concise language while Java uses verbose language. Concise language, as the name suggests, gets straight to the point without extra words. Removing additional syntax can greatly reduce the amount of time required to program.  A simple call in Java, such as the ever notorious "Hello, World" requires three several lines of coding while Python requires a single sentence. Java requires the use of checked exceptions. If the exceptions are not caught or thrown out then the code fails to compile. In terms of language, Python certainly has surpassed Java in terms of brevity.

Additionally, while Java's string handling capabilities have improved they haven't yet matched the sophistication of Python's. Web applications rely upon fast load times and extraneous code can increase user wait time. Python optimizes code in ways that Java doesn't, and this can make Python a more efficient language. However, Java does run faster than Python and this can be a significant advantage for programmers using Java. When you factor in the need for a compiler for Java applications the speed factor cancels itself out leaving Python and Java at an impasse.

While a programmer will continue to argue for the language that makes it easiest based on the programmer's current level of knowledge, new software compiled with Python takes less time and provides a simplified coding language that reduces the chance for errors. When things go right, Java works well and there are no problems. However, when errors get introduced into the code, it can become extremely time consuming to locate and correct those errors. Python generally uses less code to begin with and makes it easier and more efficient to work with.

Ultimately, both languages have their own strengths and weaknesses. For creating simple applications, Python provides a simpler and more effective application. Larger applications can benefit from Java and the verbosity of the code actually makes it more compatible with future versions. Python code has been known to break with new releases. Ultimately, Python works best as a type of connecting language to conduct quick and dirty work that would be too intensive when using Java alone. In this sense, Java is a low-level implementation language. While both languages are continuing to develop, it's unlikely that one language will surpass the other for all programming needs in the near future.

I remember the day like it was yesterday. Pac Man had finally arrived on the Atari 2600.  It was a clear and sunny day, but it was slightly brisk. My dad drove us down to the video store about three miles from our Michigan house. If I remember correctly, the price for the game was $24.99.  It was quite expensive for the day, probably equaling a $70 game in today’s market, but it was mine. There *was* no question about it. If you purchase a game, it’s your game… right?

You couldn’t be more wrong.  With all the licensing agreements in games today, you only purchase the right to play it. You don’t actually “own” the game. 

Today, game designers want total control over the money that comes in for a game. They add in clauses that keep the game from being resold, rented, borrowed, copied, etc. All of the content in the game, including the items you find that are specifically for you, are owned by the software developer. Why, you ask, do they do this? It’s all about the money.

This need for greed started years ago, when people started modifying current games on the market. One of the first games like this was Doom. There were so many third part mods made, but because of licensing agreement, none of these versions were available for resale. The end user, or you, had to purchase Doom before they could even install the mod.  None of these “modders” were allowed to make any money off their creation.

Tech Life in Indiana

Some fun facts about Indiana: The first professional baseball game was played in Fort Wayne on May 4, 1871; The Indiana Gazette Indiana's first newspaper was published in Vincennes in 1804; A great deal of the building limestone used in the U.S. is quarried in Indiana. As for the tech life in Indiana, there are growing opportunities within the state in some of the major corporations such as WellPoint, Biomet, and Zimmer Holdings (just to name a few)
I am what the librarians have made me with a little assistance from a professor of Greek and a few poets.  ~Bernard Keble Sandwell
other Learning Options
Software developers near Muncie have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Indiana since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Linux Unix programming
  • Get your questions answered by easy to follow, organized Linux Unix experts
  • Get up to speed with vital Linux Unix programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Muncie, Indiana Linux Unix Training , Muncie, Indiana Linux Unix Training Classes, Muncie, Indiana Linux Unix Training Courses, Muncie, Indiana Linux Unix Training Course, Muncie, Indiana Linux Unix Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.